New framework reduces memory usage and boosts energy efficiency for large-scale AI graph analysis

BingoCGN, a scalable and efficient graph neural network accelerator that enables inference of real-time, large-scale graphs through graph partitioning, has been developed by researchers at the Institute of Science Tokyo, Japan. This breakthrough framework utilizes an innovative cross-partition message quantization technique and a novel training algorithm to significantly reduce memory demands and increase computational and energy efficiency.

发布者:Dr.Durant,转转请注明出处:https://robotalks.cn/new-framework-reduces-memory-usage-and-boosts-energy-efficiency-for-large-scale-ai-graph-analysis/

(0)
上一篇 24 6 月, 2025 3:19 上午
下一篇 24 6 月, 2025 3:30 上午

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信
社群的价值在于通过分享与互动,让想法产生更多想法,创新激发更多创新。